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Integration of spatial and multiomics data to
provide models for tumor stratification

Image analysis

Phenotypic molecular profiles

Patient metadata
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Prediction and classification models

Biomarker discovery
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Targeted therapies, including immunotherapy, has led
to Increased survival rate for cancer patients

Conventional oncology Targeted therapy Immunotherapy
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Side effects Progression-free survival Side effects Progression-free survival Side effects Progression-free survival

* Immunotherapy provides longer PFS (and even cure!) in responders

* For most cancers, only 15-20% of patients respond to available check point blockers



Precision medicine by molecular profiling of tumors

Conventional therapy
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The complex tumor microenvironment
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The complex composition of
tumor microenvironments needs
to be understood in order to
make optimal treatment
selection for individual patients

Karin E. de Visser, Johanna A. Joyce,

The evolving tumor microenvironment: From
cancer initiation to metastatic outgrowth,
Cancer Cell, Volume 41, Issue 3, 2023



The emerge of Spatial omics

Single-cell omics
Immunofluorescence
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Spatial omics

Combines high-
resolution imaging
with high-plex

molecular profiling

Immunohistochemistry Bulk omics



Digital Spatial Profiling — protein or RNA signatures of
spatially defined regions

@ Stain @ Select ROI @ UV-Cleave @ Dispense @ Barcode
& Collect Count

Figure from
Nanostring

* The first Spatial Omics technology allowing for both protein and RNA profiling of FFPE tissues

* FFPE is the standard format for tissue diagnostics and archiving
- Opportunities to explore biobanks for high-resolution characterization of cells and interactions in tissues
- Facilitates direct transfer of predictive image- and biomarker-based models to the clinical settings

» DSP links molecular data to regions of interest, but does not (inherently) provide image-based
metrics such as cell-to-cell distances or densities

« Frameworks for integrative analysis merging DSP data and data from other modalities have yet to
be developed



Molecular profiling of distinct cellular phenotypes
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Examples of studies

1. Protein profiles of immune regions in lung cancer
2. Protein profiles of iImmune and tumor regions in ovarian cancer

3. Gene profiles of macrophages, neutrophils and cancer cells in
pancreatic cancer



1. Phenotypic characterization of spatial immune
Infiltration niches in non-small cell lung cancer

Workflow Linear mixed model analysis
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Functional profiles of distinct immune niches, independent of the overall level of immune infiltration
» Potential immuno-oncology targets



2. Spatial tumor Immune phenotypes In ovarian cancer

1. Protein profiling of tumor and immune
compartments in each region of interest

Diffuse immune infiltration

dow wabe o
OC_TMA1 | 001 | tumor OC_TMAT | 601 | Immune

L | LI P |.|| ‘l‘ na | T

OC_TMA | 008 | tumor OC_TMA1 | 008 | immune

2. Image processing and spatial
metrics analysis
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3. Combined spatial metrics and
protein profiling analysis

High vs low GDC (fraction of tumor cells
connected to at least one immune cell within a
12 pym distance) compared using linear mixed
models

High GDCl/diffuse
infiltration: Activated
cytotoxic and helper T-
cells, immune
suppression markers,
antigen presentation
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» Breaking down heterogeneity — stratification by tumor immune phenotypes

* Immuno-oncology target activity in OC histology subtypes



3. Effect of macrophage and neutrophil infiltration In
pancreatic tumors

1. Image analysis — spatial distribution of TAMs, TANs and cancer cells in relation to cancer stage,

subtype and outcome
2. Gene profiling (18 000-plex) of TAMs, TANs and tumor cells to identify gene programs associated

with immune suppression

Cancer cells, , Neutrophils

Jakob Blom



Multiple layers of data per patient

. Patient 1 . Patient n

Cell type 1 Cell type 2 Cell type 3 Cell type 1 Cell type 2 Cell type 3
o — o - Digital Spatial
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%* Cell-cell distances "5:“; Cell-cell distances image analysis
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single-cell or bulk data
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Scope of project

Spatial Omics provides high-resolution depictions of tumors, but the
vast increase in measurements does not automatically translate into
more clinically actionable information

We will generate workflows for extracting and integrating image-
derived spatial metrics with spatial omics, genomic data and clinical
metadata, to facilitate the development of integrated prediction
models to guide choice of therapy.

Work packages:

1. Spatial metrics

2. Multi-omics data integration
3. Prediction models
4

User application




Preliminary results

Established workflows for

1.

preprocessing of spatial omics data — QC and
evaluation of normalization approaches

biomarker signature identification through mixed
model regression with tumor/patient as random
effect, for binary, ordinal and continuous response
variables

Image processing and graph analytics - extraction

of spatial metrics for two classes
- ratio, density, group degree centrality, assortativity index (relative
connection to same class vs different class), cluster co-occurrence
(relative connection between nodes vs random within and between

classes)

Elias Carlsson, Mattis Knulst
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Evaluation of normalization methods. Top three plots are colored by
ROI-type (tumor in grey, stroma in blue and mixed in red). Bottom
three plots are colored by negative control (Rb 1gG) intensity.



Interactive applications to facilitate DSP analysis

Elias Carlsson
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1. Spatial metrics

» Single or cyclic 4-plex
Immunofluorescence

Generate workflows for

 Image processing (background
subtraction, stitching, ...)

* DL-based segmentation and cell
classification

* Neighborhood analysis and graph
analytics to describe tissue structures and
spatial relation between cell types

 Spatial metrics: gdc, aac, ccr, entropy
Indices




2. Multi-omics data integration

 Currently working on merging

protein and RNA data generated : =
from sequential tissue sections S
USIng DSP vﬁy :il% Inspection of feat ights
* Yet to define methods for /ﬂ\“_w*sa” g i {_}
integrating spatial omics data %, == e —
with image metrics and other K il e e !
. . Imputation of missing values Visualisation of factors
omics datasets available for the : ey~
same samples Ik
 To be evaluated: matrix Multi-Omics Factor Analysis (MOFA): unsupervised discovery of the
] i ] i principal axes of biological and technical variation when multiple omics
factorlzatlon, BayeS|an assays are applied to the same samples.
consensus CIUStering, Ricard Argelaguet, et al. Multi-Omics Factor Analysis—a

framework for unsupervised integration of multi-omics data

dimensionality reduction sets, Mol Syst Biol. (2018) 14 e8124



3. Prediction models

» Developing tools for building prediction models based on integrated spatial and multi-omics
data

« Categorical (e.g. treatment outcome) or continuous (e.g. time of progression-free survival)
response variables

« Supervised ML models in conjunction with feature selection

» Testing by cross-validation or independent data

* The goal is to define biomarker signatures to - \_

stratify patients by e.g. survival or response to 0.75 L

therapy
« Maximal condensation of features to facilitate _
clinical implementation 1 <0000t

Survival probability

0.00 1



Interactive user application

To expedite utility for non-bioinformatician users

Interactive visualization based on dimensionality
reduction / clustering to depict spatial heterogeneity,
cellular communities and interactions

Tools to assess feature selection and performance of
prediction models

TBD — embedding DSP data processing (normalization),
image analysis, integration between data points and link
to original images
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Data and applications

Datasets available for the project

Dataset

Ovarian
cancer 1

Ovarian
cancer 2

Lung
cancer

Mantle cell
lymphoma
1

Mantle cell
lymphoma
2

Mantle cell
lymphoma
3

Pancreatic
cancer

Type,
plexity

Protein
49-
plex

Protein
78-
plex

Protein
49-
plex

Protein
69-
plex

Protein
69-
plex

RNA
1811-
plex

RNA
1811-
plex

No of
patients

52

259

33

131

104

104

TBD

No
of
AOls
144

654

183

606

602

600

TBD

Type of AQIs

Immune and
tumor

Immune and
tumor

Immune

Tumor,
macrophages,
T-cells

4 different T-
cell types

Tumor, 2
different T-cell
types

Tumor,
macrophages,
neutrophils

Scope

Composition of
spatial immune
niches

Immune
infiltration
predictive of
tumor subtype
and survival
Characterizing
spatial immune
niches and
heterogeneity
Tumor,
macrophage
and T-cell
interaction
Profiling T-cell
subsets with
spatial
resolution
Lymphocyte
tumor
interactions
with spatial
resolution
Spatial
interplay of
tumor and
myeloid cells

Other data
available

Clinical metadata

Clinical metadata,
plasma affinity
proteomics,
Plasma mass-spec
proteomics
Clinical metadata,
RNAseq, IHC
scores, multiplex
immunofluorescence
Clinical metadata,
mutational status,
IHC scores, bulk
transcriptomics
Clinical metadata,
mutational status,
IHC scores, bulk
transcriptomics
Clinical metadata,
mutational status,
IHC scores, bulk
transcriptomics

Clinical metadata,
multiplex
immunofluorescence

Clinical
collaborator

Karin
Sundfeldt,
Gothenburg
University
Karin
Sundfeldt,
Gothenburg
University

Patrick
Micke,
Uppsala
University
Mats
Jerkeman,
Lund
University
Mats
Jerkeman,
Lund
University
Mats
Jerkeman,
Lund
University

Karin
Jirstrém,
Lund
University

PI

ASG

ASG

SE

SE

SE

SE

ASG

Recently submitted work on protein profiling of
spatial immune niches in NSCLC

New workflows may be applied on a larger
cohort of 712 NSCLC patients

- Additional data: Genome-wide sequencing and copy
number analysis, or RNA sequencing (400 patients)

Tumor immune microenvironment interactions
related to treatment outcome, and proposal of
new therapeutic strategies

Tentatively — immuno-oncology clinical trial-
TIME signatures related to immunotherapy
response



Summary

* Immunotherapy has the opportunity to improve
survival for cancer patients

« Tumor immune microenvironments are complex
and heterogeneous — need for precision medicine
tools

« Spatial Omics provide unprecedented resolution
of molecular profiling of tumors but frameworks to
Integrate omics data with image-derived metrics
and data from other modalities are lacking

2"'""?Jf s %@ 0007

Phenotypic molecular profiles Patient metadata Other omics data

\ ntegrated Analysis

 Benefit for patients and oncologists — models for tumor stratification in relation to targeted

cancer therapies

 Benefit for the growing Spatial Omics research community - metrics for characterizing tumor
Immune microenvironment structures, integrative tools for processing, visualizing and
iInterpreting spatial and multimodal data, insight into optimal design of Spatial Omics
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