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performance of groundwater remediation.

(B) Construction and analysis of modern time-stepping
methods.

(C) Efficient implementation of the time-stepping
methods for relevant problems.
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My background

▶ Associate senior lecturer at Centre for Mathematical Sciences in
Lund.

▶ Research in numerical analysis of (stochastic) differential
equations

Collaborator: Léa Lévy

▶ Associate senior lecturer at the division of Engineering Geology
at Lund University.

▶ Research in the assessment of the performance of groundwater
remediation.

Collaborator: Robert Klöfkorn

▶ Senior lecturer at Centre for Mathematical Sciences in Lund.

▶ Research in scientific computing and co-founder of the code
base DUNE.
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(A) Underlying application

Ground water contamination

▶ Growth in consumption can decreasing groundwater
quality.

▶ To remediate the contamination, a reactive agent is
injected into groundwater to degrade or stop the
contamination.

Then:

▶ Adequate spreading of the reagent is a challenge.

▶ Use geo-electrical methods to quantify reagent spreading.
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(A) Underlying application

From [Lévy Et al., 2022].
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(A) Modeling of the ground water flow

Porous Media Equation{
u̇ +∆Φ(u) = f (t, u), t ∈ (0,T ),

u(0) = u0,

The function f can include lower-order derivatives of u such as

▶ advection γ(t,∇u),

▶ reaction ρ(t, u),

▶ source term of the type β(t).
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(A) Connection to application

Problem

▶ Precise structure of the ground and its different layers is
not known.

▶ The structure is important to describe the coefficients
and nonlinear functions that appear in the system.

What to do

▶ To find suitable coefficients for the differential equations,
we can use a Markov-chain-Monte-Carlo (MCMC).

▶ This has been used in [Irving & Singha, 2010] for an
artificial data set for the resistivity equation.
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(A) Goals of the project

▶ Use the MCMC approach for the resistivity equations and
a data set obtained by Léa Lévy.

▶ The resulting coefficients are now random points with
respect to a suitable distribution.
⇒ We have a stochastic differential equation instead of a
deterministic problem.

▶ The stochastic equation gives a real world application for
parts (B) and (C) of the problem.

▶ Add a time dependency to the electrical model.
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(B) Temporal discretization
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Approximate the solution of{
∂u(t)
∂t

−∆u(t) = f (t) for t ∈ (0,T ],

u(0) = u0.
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Approximate the solution of{
∂u(t,x)

∂t
− ∂2u(t,x)

∂x21
− ∂2u(t,x)

∂x22
= f (t, x) for t ∈ (0,T ],

u(0) = u0.
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Approximate the solution of{
∂u(t)
∂t

−∆u(t) = f (t) for t ∈ (0,T ],

u(0) = u0.

We subdivide the temporal interval

t0 = 0 t1 t2 t3 t4 t5 = T

h



(B) Temporal discretization
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Approximate the solution of{
∂u(t)
∂t

−∆u(t) = f (t) for t ∈ (0,T ],

u(0) = u0.

We subdivide the temporal interval

t0 = 0 t1 t2 t3 t4 t5 = T

h

Then we approximate u(tn) ≈ Un defined by

Un − Un−1

h
−∆Un = f (tn).



(B) Error Analysis

We have

{U0,U1, . . . ,UN}.

We want to find

{u(0), u(t1), . . . , u(T )}.
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(B) Error Analysis

We have

{U0,U1, . . . ,UN}.

We want to find

{u(0), u(t1), . . . , u(T )}.

Questions

▶ Is Un an approximation of u(tn)?

▶ Does Un an approximate u(tn) better if h becomes smaller?

▶ Can we make statements about the size of the error before
hand?
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(B) Error Analysis

We have

{U0,U1, . . . ,UN}.

We want to find

{u(0), u(t1), . . . , u(T )}.

Tasks

▶ For a given problem, find a suitable scheme.

▶ Analyze the error.

▶ Find error bounds.
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(B) Back to test equation
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We want to approximate the solution of{
∂u(t)
∂t

−∆u(t) = f (t) for t ∈ (0,T ]

u(0) = u0.

.
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−∆u(t) = f (t) for t ∈ (0,T ]

u(0) = u0.

We subdivide the temporal interval

t0 = 0 t1 t2 t3 t4 t5 = T

h

Then we can approximate u(tn) ≈ Un defined by

(I − h∆)Un = Un−1 + hf (tn).
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We want to approximate the solution of{
∂u(t,x)

∂t
−∆u(t, x) = f (t, x) for t ∈ (0,T ], x ∈ D

u(0) = u0.

We subdivide the temporal interval

t0 = 0 t1 t2 t3 t4 t5 = T

h

Then we can approximate u(tn, x) ≈ Un(x) defined by

(I − h∆)Un(x) = Un−1(x) + hf (tn, x), x ∈ D.



(B) Domain decomposition: Schwartz method
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

D
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u = 0 on ∂D.

D1 D2



(B) Domain decomposition: Schwartz method

Monika Eisenmann, monika.eisenmann@math.lth.se Flow problems in porous media 13

▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u1 = f̃ in D1,

u1 = 0 on ∂D ∩ ∂D1,

u1 = ? on ∂D1 ∩ ∂D2.,

D1
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u2 = f̃ in D2,

u2 = 0 on ∂D ∩ ∂D2,

u2 = ? on ∂D1 ∩ ∂D2.

D2
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u1

2 = f̃ in D2,

u1
2 = 0 on ∂D ∩ ∂D2,

u1
2 = u1

1 on ∂D1 ∩ ∂D2.
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u2

1 = f̃ in D1,

u2
1 = 0 on ∂D ∩ ∂D1,

u2
1 = u1

2 on ∂D1 ∩ ∂D2.

D1



(B) Domain decomposition: Schwartz method
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u2

2 = f̃ in D2,

u2
2 = 0 on ∂D ∩ ∂D2,

u2
2 = u2

1 on ∂D1 ∩ ∂D2.

D2
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u3

1 = f̃ in D1,

u3
1 = 0 on ∂D ∩ ∂D1,

u3
1 = u2

2 on ∂D1 ∩ ∂D2.

D1



(B) Domain decomposition: Schwartz method
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u3

2 = f̃ in D2,

u3
2 = 0 on ∂D ∩ ∂D2,

u3
2 = u3

1 on ∂D1 ∩ ∂D2.

D2
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u4

1 = f̃ in D1,

u4
1 = 0 on ∂D ∩ ∂D1,

u4
1 = u3

2 on ∂D1 ∩ ∂D2.

D1
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ It can be easier to solve
(I − h∆)u4

2 = f̃ in D2,

u4
2 = 0 on ∂D ∩ ∂D2,

u4
2 = u4

1 on ∂D1 ∩ ∂D2.

D2



(B) Domain decomposition: Schwartz method
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

D



(B) Domain decomposition: Schwartz method
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▶ First: We look at a classical method for an iterative domain
decomposition scheme.

▶ Example problem:{
(I − h∆)u = f̃ in D,

u = 0 on ∂D.

▶ This method has many further
variations.

D



(B) Domain decomposition

Then:

▶ Incorporate the domain decomposition in the
time-stepping method through an operator splitting.

▶ Offers possibility for parallel implementation.

D1 D2 D1 D2

A decomposition into two sub-domains D1,D2 for rectangular
domain D.
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(B) Nonlinear equations

D2D1

1

▶ Left: Plot of a nonlinear pulse with a sharp edge (free
boundary).

▶ Right: The support (part of the domain where the
solution is non-zero) of the pulse.
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(B) What has been done

Deterministic nonlinear differential equation{
u̇ + A(t, u) = f (t, u), t ∈ (0,T ),

u(0) = u0,

as for example the porous media equation{
u̇ = ∆Φ(u), (t, x) ∈ (0,T )×D,

u(0) = u0.
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(B) What has been done

Deterministic nonlinear differential equation{
u̇ + A(t, u) = f (t, u), t ∈ (0,T ),

u(0) = u0,

as for example the porous media equation{
u̇ = ∆Φ(u), (t, x) ∈ (0,T )×D,

u(0) = u0.

Known results for operator splitting schemes:

▶ Rigorous convergence analysis [Hansen & Henningsson, 2016],
[E. & Hansen, 2018, 2022].

Monika Eisenmann, monika.eisenmann@math.lth.se Flow problems in porous media 16



(B) What has been done

Deterministic nonlinear differential equation{
u̇ + A(t, u) = f (t, u), t ∈ (0,T ),

u(0) = u0,

as for example the porous media equation{
u̇ = ∆Φ(u), (t, x) ∈ (0,T )×D,

u(0) = u0.

Goals:

▶ Rigorous analysis for moving domains.

▶ Randomized splittings.
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(B) What has been done

Stochastic differential equation{
du + A(t, ω, u) dt = f (t, ω, u) dt + g(t, ω, u) dW (t), t ∈ (0,T ),

u(0) = u0,

as for example the stochastic porous media equation{
du +∆Φ(u) dt = g(t, ω, u) dW (t), t ∈ (0,T ),

u(0) = u0.
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(B) What has been done

Stochastic differential equation{
du + A(t, ω, u) dt = f (t, ω, u) dt + g(t, ω, u) dW (t), t ∈ (0,T ),

u(0) = u0,

as for example the stochastic porous media equation{
du +∆Φ(u) dt = g(t, ω, u) dW (t), t ∈ (0,T ),

u(0) = u0.

Known results:

▶ Existence theory, for linear, semi-linear, quasi-linear equations.
[Rozovskii, 1990], [Barbu Et al., 2017], . . .

▶ Simple numerical schemes for linear/semi-linear equation
[Gyoengy & Millet, 2009], [Brehier & Wang, 2020], . . . .
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(B) What has been done

Stochastic differential equation{
du + A(t, ω, u) dt = f (t, ω, u) dt + g(t, ω, u) dW (t), t ∈ (0,T ),

u(0) = u0,

as for example the stochastic porous media equation{
du +∆Φ(u) dt = g(t, ω, u) dW (t), t ∈ (0,T ),

u(0) = u0.

Goals:

▶ More advanced numerical methods, as for example, domain
decomposition schemes.

▶ Efficient implementation and relevant numerical examples.

▶ Work towards models from part (A).
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(C) So far out numerical examples

For D = (−1, 1)× (−1, 1) and DT = D × (0, 1),
∂tu(t, x)− 1

10
∆u(t, x) = f (t, x), (t, x) ∈ DT

u(t, x) = 0, (t, x) ∈ DT

u(0, x) = u0(x) x ∈ D,

we choose the source term f such that the exact solution is
given by

u(t, x , y) = e−100(x−r cos(2πt))2−100(y−r sin(2πt))2 .
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(C) Visualization of the test problem
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(C) Improvement

Good

▶ We can see (on small scale test equations) that our
theory is working.

▶ The code is simple and it is easy to make changes.

Improvement needed:

▶ Test examples are not close enough to applications.

▶ Our implementation is not build to be efficient.
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(C) DUNE

▶ DUNE, the Distributed and Unified Numerics
Environment is a modular toolbox for solving partial
differential equations.

▶ It a free software that supports ready to use methods like
▶ Finite Elements,
▶ Finite Volumes,
▶ Finite Differences.

▶ Idea of DUNE: create slim interfaces allowing to use
efficient methods that are based on modern C++ codes.

▶ DUNE ensures efficiency in scientific computations.
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(C) Why DUNE?

We receive

▶ Existing code base that we can add our methods to.

▶ More relevant examples become accessible with DUNE.

▶ More efficient implementations than our naive
implementation.

▶ Close (or decrease) gap to real world applications like (A).

Moreover

▶ Robert Klöfkorn (Lund University) is one of the
developers of DUNE.

▶ Collaboration and support to fulfill goals.
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(C) More complex nonlinear example

Euler equation in divergence form:

∂tU +∇ ·
(
F(U)−A(U)∇U

)
= S(U) in Ω

where the source term and the fluxes are

F(U) =


ρu ρw

ρu2 + p ρuw
ρuw ρw2 + p
uρθ wρθ

 , A(U)∇U =


0 0

∂xu ∂zu
∂xw ∂zw
∂xθ ∂zθ

 , S(U) =


0
0

−ρg
0

 ,

for U = (ρ, ρvT , ρθ) and

▶ ρ being the density,

▶ θ the potential temperature,

▶ v = (u,w) the velocity field.
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(C) Visualization Euler’s equation with DUNE
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Special thanks to Johannes Kasimir for providing me with this
animation and the relevant information!
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(A) Development of a model for the assessment of the
performance of groundwater remediation.
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methods for relevant problems.
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Thank you for your
attention!
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