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The study of floral evolution:
Darwin’s ‘flank movement on the enemy’

* ‘no one else has perceived that my
chief interest in my orchid book,
has been that i1t was a “flank
movement” on the enemy’ (Darwin

to Asa Gray, July 23" 1862)

* ‘If you grant an intelligent designer
anywhere in Nature, you may be
confident that he has had

Charles Robert Darwin

something to do with the T Ve
¢ ' 1 1 ’ Contrivan
contrivances” 1n your Orchids. S s

(G I’ay (0] DarWin, JUIy 2nd 1862) are Fertilised by Insects
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Measuring Natural Selection
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* Positive (or negative) relationship
between a trait and a fitness
component

* Pollinator-mediated selection arise
when pollinators prefer some
flowers over others, or when floral
traits affect the efficiency of
pollen transfer
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Tralits are not independent

 To account for (measured) correlated traits,
linear selection gradients are estimated as
the partial regression coefficients of relative
fitness on a set of traits.

* Relative fitness =
Individual fitness/population mean fitness

* In plants, we often know or can hypothesize
the functions of specific traits in the
pollination process

Chapurlat et al. 2015 New Phyt



The Lande-Arnold approach to measuring
selection

 Total selection on a trait 1s the sum of direct selection on the focal trait,
and indirect selection on phenotypically correlated traits
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Trait z Net selection on flower size = 0.4+ 0.5 x 0.6 =0.7

Lande & Arnold 1983 Evolution



Building a fitness function

Traits > Performance — Fitness
Advertisement >

Reward Pcross

). (]
Pollinator fit / Psecr P=VxP.+Ps S=f(P)

Selfing

Visitation (V) = f(Advertisement, Reward)
Cross-pollen arrival (Pross) = f(Advertisement, Reward, Fit)

Self-pollen arrival (Psg, ) = f(Advertisement, Reward, Fit, Herkogamy)
Opedal 2021 J Poll Ecol
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Treating the coflowering community as a
unmeasured (latent) variable

* With many coflowering species,

* Alternative approach is to
consider the community as a

it becomes untractable to model
the effect of each separately

composite variable representing

all coflowering species /




Opedal et al. 2022 JEB




Theory: selection analysis with reduced-rank regression

» Reduced-rank regression (Anderson 1951; Izenman 1975) achieves dimension reduction of multivariate
problems by projecting an original set of covariates onto a reduced set of composite variables that best explains
variance in the response variable. In our case, the composite scent trait under selection

» The reduced-rank regression covariates (scent selection axis) are obtained as linear combinations of the

O,RRR
original covariates, x;, _+x) = 27;1 Wy X;1, Where the weights wy,; determine the contribution of the original

covariates (volatiles) X;; to the new covariate x;(, _+).-

* The weights w; and the regression coefficients 5 ; are estimated during model fitting (posterior sampling). For
the weights, we apply a multiplicative Gamma process shrinkage prior to ensure that the leading axis explains
the most variation. Thus, our approach jointly estimates the structure of the scent selection axis, and
selection acting on it.

Opedal et al. 2022 JEB



Is the 'scent selection axis’ a reasonable

approximation?

* Explanatory power always

higher for multiple-regression:

fully expected

* Predictive power tends to be
higher for reduced-rank
regression: less overfitting

Reduced-rank regression

Opedal et al. 2022 JEB
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Characterizing the scent selection axis

Scent selection axis 1
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Theory: co-flowering community analysis with reduced-
rank regression

» Reduced-rank regression (Anderson 1951; Izenman 1975) achieves dimension reduction of multivariate
problems by projecting an original set of covariates onto a reduced set of composite variables that best explains
variance in the response variable. In our case, the combination of co-flowering species associated with
pollination success of a focal plant

» The co-flowering community variables are obtained as linear combinations of the original covariates,
O,RRR
Xi(ng+k) = Z?gl Wy X1, Where the weights wy; determine the contribution of the original covariates

(species) X;; to the new covariate x;(, +x)-

* The weights wy; and the regression coefficients 5 ; are estimated during model fitting (posterior sampling). For
the weights, we apply a multiplicative Gamma process shrinkage prior to ensure that the leading axis explains
the most variation. Thus, our approach jointly estimates the structure of the community variable, and its
effect on a focal species



Still a single focal species, what about multiple?

“Hierarchical structure linking species together”

Co-flowering Co-flowering Co-flowering >
community HETEROSPECIFIC community HETEROSPECIFIC community _l—zﬁnospscmc
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Pollmatm fit ﬁ =VxPe+P; S= f(P) Pollmatm fit ﬁ =VxPe+P; §= f(P? Pollmatm fit ﬁ =VxPe+P; §= f(p,
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Methodological advances towards
community-level analyses

RESEARCH ARTICLE

* An d IySI ng p I ant- pOI I N a:to r Efficient, automated and robust pollen analysis using deep
interactions and selection at the learning
CO m m u n ity | eve | iS CO m p | eX Ola Olsson' | Melanie Karlsson? | Annas. Persson? | Henrik G. Smith'? |
Vidula Varadarajan® | Johanna Yourstone! | Martin Stjernman?

e Advances in automated pollen e
identification and joint modelling ‘ ’ Q

paves the way forward o




Methodological advances towards

community-level analyses

Joint species distribution modelling with the r-package Hmsc

* Analysing plant-pollinator
interactions and selection at the
. . Gleb Tikhonov'? | @ystein H. Opedal®*? | Nerea Abrego® | Aleksi Lehikoinen® |
Communlty |eve| |S Complex Melinda M. J. de Jonge® | Jari Oksanen’ | Otso Ovaskainen®?

e Advances in automated pollen
identification and joint modelling
paves the way forward




Hierarchical joint models
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Opedal & Hegland 2020 J Ecol



The Rudsviki data

e 20 plots

* 9 bumblebee-pollinated plant species
e 200 censuses, each 10 min

* Number of visits to each species
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Model 1: Latent variables only

Campanula rotundifolia
Centaurea jacea
Clinopodium vulgare
Euphrasia stricta
Hypericum maculatum
Knautia arvensis
Prunella vulgaris
Trifolium pratense

Trifolium repens
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Model 1: Temperature only

O Random: Census (mean = 24)
@ Random: Plot {mean = 35)
O Temperatwre (mean =41)



Model 2: Conspecific floral abundances

Campanula rotundifolia

Centaurea jacea .

Clinopodium vulgare .

Euphrasia stricta

Hypericum maculatum .

Knautia arvensis .
Prunella vulgaris .

Trifolium pratense

Trifolium repens
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Model 1: Temperature only

Model 2: + Conspecific flowers

O Random: Census (mean = 24)
@ Random: Plot {mean = 35)
O Temperatwre (mean =41)

O Random: Census {mean =7.3)

@ Random: Plot {mean = §.8)

O Temperature (mean = 12)

B Conspecific flowers (mean = 74.1)



Model 3: All floral abundances

Campanula rotundifolia
Centaurea jacea
Clinopodium vulgare
Euphrasia stricta
Hypericum maculatum
Knautia arvensis
Prunella vulgaris
Trifolium pratense

Trifolium repens
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Model 1: Temperature only

Model 2: + Conspecific flowers
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Model 3: + Heterospecific flowers
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O Random: Census {(mean = 24)
@ Random: Plot {mean = 35)
B Temperature (mean = £1)

O Random: Census {mean = 7.3)

B Random: Plot imean = 8.8)

O Temperature {mean = 12)

M Conspecific flowers (mean =74.1)

O Random: Census {mean =4.1)

B Random: Plot (mean = 3.8)

B Temperature (mean = 3.5)

W Conspecific flowers (mean = 51.7)
M Heterospecific flowers (mean = 33.8)



Model 3: All floral abundances

* Directionality:
.. Campanula rotundifolia
* TWO_Way pOSItlve Centaurea jacea

Clinopodium vulgare
Euphrasia strict
Hypericum maculatum

Knautia arvensis

Prunella vulgaris
Trifolium pratense

Trifolium repens




Model 3: All floral abundances

* Directionality:

- . Campanula rotundifolia . ..
* TWO-Way pOSItlve Centaurea jacea . 22
° One_Way pOSItIVG Clinopodium vulgare | 04
Euphrasia stricta L 02
Hypericum maculatum 0
Knautia arvensis -—0.2
Prunella vulgaris -—0.4
Trifolium pratense —0.6
-0.8

Trifolium repens



Model 3: All floral abundances

Directionality:
.. Campanula rotundifolia
* TWO_Way pOSItlve Centaurea jacea
° One_Way pOSItIVG Clinopodium vulgare

Euphrasia stricta

¢ OnE'Way negatlve Hypericum maculatum

Knautia arvensis

Prunella vulgaris
Trifolium pratense

Trifolium repens




Model 3: All floral abundances

Directionality:

Two-way positive
One-way positive
One-way negative
Two-way positive-negative

Campanula rotundifolia
Centaurea jacea
Clinopodium vulgare
Euphrasia stricta
Hypericum maculatum
Knautia arvensis
Prunella vulgaris
Trifolium pratense

Trifolium repens
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Coflowering Linum species In southern Spain

Linum suffruticosum

Ruiz-Martin et al. 2018
Pérez-Barrales & Armbruster, 2" review

Rocio Pérez-Barrales et al.
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