Extending latent-variable modelling of plant-pollinator interactions

Øystein H. Opedal Department of Biology Lund University

The study of floral evolution: Darwin's 'flank movement on the enemy'

- 'no one else has perceived that my chief interest in my orchid book, has been that it was a "flank movement" on the enemy' (Darwin to Asa Gray, July 23rd 1862)
- 'If you grant an intelligent designer anywhere in Nature, you may be confident that he has had something to do with the "contrivances" in your Orchids.' (Gray to Darwin, July 2nd 1862)

Measuring Natural Selection

- Positive (or negative) relationship between a trait and a fitness component
- Pollinator-mediated selection arise when pollinators prefer some flowers over others, or when floral traits affect the efficiency of pollen transfer

Traits are not independent

- To account for (measured) correlated traits, linear selection gradients are estimated as the partial regression coefficients of relative fitness on a set of traits.
- Relative fitness =

individual fitness/population mean fitness

• In plants, we often know or can hypothesize the functions of specific traits in the pollination process

The Lande-Arnold approach to measuring selection

• Total selection on a trait is the sum of direct selection on the focal trait, and indirect selection on phenotypically correlated traits

Lande & Arnold 1983 Evolution

Building a fitness function

Visitation (V) = f(Advertisement, Reward) Cross-pollen arrival (P_{CROSS}) = f(Advertisement, Reward, Fit) Self-pollen arrival (P_{SELF}) = f(Advertisement, Reward, Fit, Herkogamy)

Opedal 2021 J Poll Ecol

Plants do not interact with their pollinators in isolation

How can we extend single-species

analyses to the community level?

Treating the coflowering community as a unmeasured (latent) variable

- With many coflowering species, it becomes untractable to model the effect of each separately
- Alternative approach is to consider the community as a composite variable representing all coflowering species

0

HO

O LOH

0

To Offer

OL .

Of of

Theory: selection analysis with reduced-rank regression

- Reduced-rank regression (Anderson 1951; Izenman 1975) achieves dimension reduction of multivariate problems by projecting an original set of covariates onto a reduced set of composite variables that best explains variance in the response variable. In our case, **the composite scent trait under selection**
- The reduced-rank regression covariates (scent selection axis) are obtained as linear combinations of the original covariates, $x_{i(n_c+k)} = \sum_{l=1}^{n_c^{O,RRR}} w_{kl} \tilde{x}_{il}$, where the weights w_{kl} determine the contribution of the original covariates (volatiles) \tilde{x}_{il} to the new covariate $x_{i(n_c+k)}$.
- The weights w_{kl} and the regression coefficients β_{kj} are estimated during model fitting (posterior sampling). For the weights, we apply a multiplicative Gamma process shrinkage prior to ensure that the leading axis explains the most variation. Thus, **our approach jointly estimates the structure of the scent selection axis, and selection acting on it**.

Is the 'scent selection axis' a reasonable approximation?

- Explanatory power always higher for multiple-regression: fully expected
- Predictive power tends to be higher for reduced-rank regression: less overfitting

Reduced-rank regression

Opedal et al. 2022 JEB

Characterizing the scent selection axis

Opedal et al. 2022 JEB

Theory: co-flowering community analysis with reducedrank regression

- Reduced-rank regression (Anderson 1951; Izenman 1975) achieves dimension reduction of multivariate problems by projecting an original set of covariates onto a reduced set of composite variables that best explains variance in the response variable. In our case, **the combination of co-flowering species associated with pollination success of a focal plant**
- The co-flowering community variables are obtained as linear combinations of the original covariates, $x_{i(n_c+k)} = \sum_{l=1}^{n_c^{O,RRR}} w_{kl} \tilde{x}_{il}$, where the weights w_{kl} determine the contribution of the original covariates (species) \tilde{x}_{il} to the new covariate $x_{i(n_c+k)}$.
- The weights w_{kl} and the regression coefficients β_{kj} are estimated during model fitting (posterior sampling). For the weights, we apply a multiplicative Gamma process shrinkage prior to ensure that the leading axis explains the most variation. Thus, **our approach jointly estimates the structure of the community variable, and its effect on a focal species**

Still a single focal species, what about multiple?

Methodological advances towards community-level analyses

- Analysing plant-pollinator interactions and selection at the community level is complex
- Advances in automated pollen identification and joint modelling paves the way forward

RESEARCH ARTICLE

fethods in Ecology and Evolution

Ola Olsson¹ | Melanie Karlsson² | Anna S. Persson² | Henrik G. Smith^{1,2} | Vidula Varadarajan¹ | Johanna Yourstone¹ | Martin Stjernman¹

Methodological advances towards community-level analyses

- Analysing plant-pollinator interactions and selection at the community level is complex
- Advances in automated pollen identification and joint modelling paves the way forward

APPLICATION

Joint species distribution modelling with the R-package HMSC

hods in Ecology and Evolutio

Gleb Tikhonov^{1,2} | Øystein H. Opedal^{2,3} | Nerea Abrego⁴ | Aleksi Lehikoinen⁵ | Melinda M. J. de Jonge⁶ | Jari Oksanen⁷ | Otso Ovaskainen^{2,3}

Hierarchical joint models

- Hierarchical joint models allows analysing multiple response variables (e.g. pollinator species) while inferring joint responses
- Also allows inferring residual associations after accounting for relevant covariates (e.g phenotype)

The Rudsviki data

- 20 plots
- 9 bumblebee-pollinated plant species
- 200 censuses, each 10 min
- Number of visits to each species

Model 1: Latent variables only

Model 2: Conspecific floral abundances

- Directionality:
- Two-way positive

- Directionality:
- Two-way positive
- One-way positive

- Directionality:
- Two-way positive
- One-way positive
- One-way negative

- Directionality:
- Two-way positive
- One-way positive
- One-way negative
- Two-way positive-negative

Coflowering Linum species in southern Spain

Linum suffruticosum

Linum suffruticosum

Linum viscosum

Ruiz-Martín et al. 2018 Pérez-Barrales & Armbruster, 2nd review

Rocío Pérez-Barrales et al.

