LUNDS

UNIVERSITET

Julia in Research

Albin Heimerson

What | do

PhD student doing ML for datacenter/cloud control
@ Controlling large interconnected systems
@ Alot of data
@ Reinforcement learning for control

@ Modelling to improve learning

Albin Heimerson Julia in Research

Why | use Julia

Partly because | just enjoy the language, but also
@ Automatic Differentiation for the whole language
@ Composability between packages
@ High level and high performance

@ Transparency in library code, Julia all the way

Albin Heimerson Julia in Research

Trade-offs in Automatic Differentiation

Julia
@ ForwardDiff/ReverseDiff - Operator overloading

@ Zygote - Source to source reverse mode
@ Enzyme - LLVM source to source reverse mode, experimental

Flexible choices good for different things, usable with most packages.

http://www.stochasticlifestyle.com/
engineering-trade-offs-in-automatic-differentiation- from-tensorflow-and-pytorch-to- jax-and-julia/

Albin Heimerson Julia in Research

http://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/
http://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/

Trade-offs in Automatic Differentiation

Julia
@ ForwardDiff/ReverseDiff - Operator overloading

@ Zygote - Source to source reverse mode
@ Enzyme - LLVM source to source reverse mode, experimental

Flexible choices good for different things, usable with most packages.

Python

Does not handle dynamic structure of the language.
@ Tensorflow - Essentially source to source, but make user write IR
@ PyTorch - Operator overloading
@ Jax - Non-standard interpretation to create IR, then TF

Fast with standard deep learning, not as fast or flexible outside.

http://www.stochasticlifestyle.com/
engineering-trade-offs-in-automatic-differentiation- from-tensorflow-and-pytorch-to- jax-and-julia/

Albin Heimerson Julia in Research

http://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/
http://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/

Embedding ML into differential equations

dxq 8
—— = ax1 - Br1x
Example: Lotka-Volterra' dt Lo
dzy Oxg +
—= = —{xg +yx1X9
dt Y
X1 - Prey

6 Xz - Predator

5

3

1

1] 2 4 6 8 10

1 https://docs.sciml.ai/Overview/stable/showcase/missing_physics/

Albin Heimerson Julia in Research

https://docs.sciml.ai/Overview/stable/showcase/missing_physics/

Embedding ML into differential equations

dx
Learn unknown dynamics with d_tl =axy +NN‘19(x1,x2)
neural networks

d
% = —8x9 + NNE(x1,x9)

True Data
6 Model Prediction

Population (x: and xz)

Time

Albin Heimerson Julia in Research

Embedding ML into differential equations

Loss: difference between simu- 1N iy
lated x and real xgq:q L) = N Z [%(¢)—%data(ti)]
i=1

Albin Heimerson Julia in Research

Embedding ML into differential equations

Loss: difference between simu- 1N iy
lated x and real xgq:q L) = N Z [%(¢)—%data(ti)]
i=1

function lotka_nn!(dx, x, p, t)
x_nn = model(x, p)
dx[1] = alpha * x[1] + x_nn[1]
dx[2] = -delta * x[2] + x_nn[2]
end

Albin Heimerson Julia in Research

Embedding ML into differential equations

Loss: difference between simu- 1N
lated x and real xgq:q L) = N Z [x(ti)_xdata(ti)]2
i=1

function lotka_nn!(dx, x, p, t)
x_nn = model(x, p)
dx[1] = alpha * x[1] + x_nn[1]
dx[2] = -delta * x[2] + x_nn[2]
end

function loss(p)
prob = ODEProblem(lotka_nn!, x_train[:, 11, (@, 10), p)
xhat = Array(solve(prob, saveat=t_train))
mean(abs2, x_train .- xhat)

end

Albin Heimerson Julia in Research

Embedding ML into differential equations

Loss

Population (x: and xz)

10475+

450 ~

o 10 20 30 40 50
Iterations

Albin Heimerson Julia in Research

Embedding ML into differential equations

Loss

Population (x1 and xz2)

10

10°

Time

1000 2000 3000 4000 5000 6000
Iterations

Albin Heimerson Julia in Research

Embedding ML into differential equations

Data
@ Noisy Training Data
——— Model Prediction

Population (x1 and x2)
w

0.0 25 5.0 75 10.0
Time

100 |
{
100 k|
@ |
B
St |
|
pU
10° T T~
o 2.00x10° 4.00x10° 6.00x10° 800x10° 100x10' 1.20x10°
Iterations

Albin Heimerson Julia in Research

Population (x: and xz)

—— True Data
@ Noisy Training Data
Model Prediction

0.0 25 50 75 10.0
Time

|

|

|

|

L S —

—
ey
0 5.00x10° 1.00x10" 1.50x10" 2.00x10°
Iterations

Albin Heimerson Julia in Research

True Data
Noisy Training Data
Model Prediction

Population (x: and xz)

0.0 25 5.0 75 10.0

Loss

— LA

0 1.0x10* 2.0x10° 3.0x10°
Iterations

Albin Heimerson Julia in Research

Embedding ML into differential equations

Remarks on the example:
@ Found missing dynamics with NN
@ Symbolic regression

@ More effect in more complex models

Albin Heimerson Julia in Research

Composability and Specialization

Performant composability, specialized code if types are inferred

Some interesting types

@ Extended and arbitrary precision numbers
Dual numbers for AD
Intervals for interval arithmetic
Distributions represented by number types

GPU-arrays and distributed arrays

Matrices with structure that can be exploited for performance, e.g.
diagonal/banded/sparse

Albin Heimerson Julia in Research

Performance

A few of the nice points
@ Fast specialized code when type-stable
@ Vectorized code vs for loops

@ Built in parallelism

Albin Heimerson Julia in Research

Performance

A few of the nice points

@ Fast specialized code when type-stable

@ Vectorized code vs for loops
@ Built in parallelism
Some possible pitfalls
@ Type instabilities
@ Allocations

@ Global scope

Albin Heimerson

Julia in Research

Introspection

@ Open source language and package ecosystem
@ One language all the way down

@ Useful tools (debugging, profiling) and macros

e @show func(a, b, ¢)
e @edit func(a, b, c)
o @code_llvm func(a, b, c)

Albin Heimerson Julia in Research

Summary

Julia is nice for many reasons, some of them are
@ Flexible AD
@ Composability
@ High level and high performance

@ Transparency, Julia all the way

Albin Heimerson Julia in Research

Summary

Julia is nice for many reasons, some of them are
@ Flexible AD
@ Composability
@ High level and high performance

@ Transparency, Julia all the way

Thanks for listening!
Questions?

Albin Heimerson Julia in Research

