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What | do

PhD student doing ML for datacenter/cloud control
@ Controlling large interconnected systems
@ Alot of data
@ Reinforcement learning for control

@ Modelling to improve learning

Albin Heimerson Julia in Research



Why | use Julia

Partly because | just enjoy the language, but also
@ Automatic Differentiation for the whole language
@ Composability between packages
@ High level and high performance

@ Transparency in library code, Julia all the way
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Trade-offs in Automatic Differentiation

Julia
@ ForwardDiff/ReverseDiff - Operator overloading

@ Zygote - Source to source reverse mode
@ Enzyme - LLVM source to source reverse mode, experimental

Flexible choices good for different things, usable with most packages.

http://www.stochasticlifestyle.com/
engineering-trade-offs-in-automatic-differentiation- from-tensorflow-and-pytorch-to- jax-and-julia/
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Trade-offs in Automatic Differentiation

Julia
@ ForwardDiff/ReverseDiff - Operator overloading

@ Zygote - Source to source reverse mode
@ Enzyme - LLVM source to source reverse mode, experimental

Flexible choices good for different things, usable with most packages.

Python

Does not handle dynamic structure of the language.
@ Tensorflow - Essentially source to source, but make user write IR
@ PyTorch - Operator overloading
@ Jax - Non-standard interpretation to create IR, then TF

Fast with standard deep learning, not as fast or flexible outside.

http://www.stochasticlifestyle.com/
engineering-trade-offs-in-automatic-differentiation- from-tensorflow-and-pytorch-to- jax-and-julia/
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Embedding ML into differential equations
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1 https://docs.sciml.ai/Overview/stable/showcase/missing_physics/
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Embedding ML into differential equations

dx
Learn unknown dynamics with d_tl =axy +NN‘19(x1,x2)
neural networks

d
% = —8x9 + NNE(x1,x9)

True Data
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Embedding ML into differential equations

Loss: difference between simu- 1N iy
lated x and real xgq:q L) = N Z [%(¢)—%data(ti)]
i=1
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Embedding ML into differential equations

Loss: difference between simu- 1N iy
lated x and real xgq:q L) = N Z [%(¢)—%data(ti)]
i=1

function lotka_nn!(dx, x, p, t)
x_nn = model(x, p)
dx[1] = alpha * x[1] + x_nn[1]
dx[2] = -delta * x[2] + x_nn[2]
end
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Embedding ML into differential equations

Loss: difference between simu- 1N
lated x and real xgq:q L) = N Z [x(ti)_xdata(ti)]2
i=1

function lotka_nn!(dx, x, p, t)
x_nn = model(x, p)
dx[1] = alpha * x[1] + x_nn[1]
dx[2] = -delta * x[2] + x_nn[2]
end

function loss(p)
prob = ODEProblem(lotka_nn!, x_train[:, 11, (@, 10), p)
xhat = Array(solve(prob, saveat=t_train))
mean(abs2, x_train .- xhat)

end
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Embedding ML into differential equations

Loss

Population (x: and xz)
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Embedding ML into differential equations

Loss

Population (x1 and xz2)
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Embedding ML into differential equations

Data
@ Noisy Training Data
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Population (x: and xz)
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True Data
Noisy Training Data
Model Prediction

Population (x: and xz)
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Embedding ML into differential equations

Remarks on the example:
@ Found missing dynamics with NN
@ Symbolic regression

@ More effect in more complex models

Albin Heimerson Julia in Research



Composability and Specialization

Performant composability, specialized code if types are inferred

Some interesting types

@ Extended and arbitrary precision numbers
Dual numbers for AD
Intervals for interval arithmetic
Distributions represented by number types

GPU-arrays and distributed arrays

Matrices with structure that can be exploited for performance, e.g.
diagonal/banded/sparse
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Performance

A few of the nice points
@ Fast specialized code when type-stable
@ Vectorized code vs for loops

@ Built in parallelism
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Performance

A few of the nice points

@ Fast specialized code when type-stable

@ Vectorized code vs for loops
@ Built in parallelism
Some possible pitfalls
@ Type instabilities
@ Allocations

@ Global scope
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Introspection

@ Open source language and package ecosystem
@ One language all the way down

@ Useful tools (debugging, profiling) and macros

e @show func(a, b, ¢)
e @edit func(a, b, c)
o @code_llvm func(a, b, c)
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Summary

Julia is nice for many reasons, some of them are
@ Flexible AD
@ Composability
@ High level and high performance

@ Transparency, Julia all the way
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Summary

Julia is nice for many reasons, some of them are
@ Flexible AD
@ Composability
@ High level and high performance

@ Transparency, Julia all the way

Thanks for listening!
Questions?
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