
Introduction to Julia

Toivo Henningsson

April 11, 2023



About me

I Involved in the Julia community for the first few years,
been using it ever since

I Wrote the first Julia debugger in 2012

I Currently using Julia to model/explore hardware acceleration of
Simultaneous Localization and Mapping (SLAM) algorithms at Ericsson



Overview

Julia:

I Dynamic language

I Aimed at technical computing (but can do many things!)

I Expressive

I Can be fast



Initial example

Let’s define a simple function:

f(x, y) = y / (y + exp(-2x))

What can we do with it?

Evaluate:

julia> f(1, 2)

0.9366210616669624

Evaluate with complex arguments:

julia> f(1 + 2im, 2 - 1im)

1.058531467476806 - 0.026097049754484028im



Initial example

Function:

f(x, y) = y / (y + exp(-2x))

Matrix math:

julia> using LinearAlgebra # for I

julia> f([1 2

0 3], I)

2x2 MatrixFloat64:

0.880797 0.11673

0.0 0.997527



Initial example

Function:

f(x, y) = y / (y + exp(-2x))

Interval arithmetic:

julia> using IntervalArithmetic: Interval

julia> f(Interval(1, 2), Interval(1, 1.5))

[0.611495, 1.47303]



Initial example

Function, with wrappers:

f(x, y) = y / (y + exp(-2x))

g(x) = f(x, 1)

h(v) = f(v[1], v[2])

Derivatives:

julia> using ForwardDiff: derivative, gradient

julia> derivative(g, 2)

0.03532541242658223

julia> gradient(h, [2, 1])

2-element VectorFloat64:

0.03532541242658223

0.017662706213291135



Initial example

Function:

f(x, y) = y / (y + exp(-2x))

Error propagation:

julia> using Measurements

julia> f(1 ± 2, 1)

0.88 ± 0.42

Uses automatic differentiation to propagate the uncertainty.



A word about typing

I x::T is a type assertion
=⇒ throw an error if x is not of type T

I Can also specify argument types:
f(x::Int, s::String) = ...

I Typing is optional in general

I Julia’s type inference will try to figure out which types are used,
even when none are specified



Multiple dispatch

Functions can be overloaded based on all argument types:

f(x, y) = x + y

f(x::Int, y::Int) = x - y

The most speficic method that applies is called:

julia> f(10, 1)

9

julia> f(10.0, 1)

11.0

julia> f(10, 1.0)

11.0

julia> f(10.0, 1.0)

11.0



Multiple dispatch

Ambiguous overloading:

f(x, y) = x + y

f(x::Int, y) = x - y

f(x, y::Int) = y - x

No most specific method =⇒ error:

julia> f(10, 1)

ERROR: MethodError: f(::Int64, ::Int64) is ambiguous. Candidates:

f(x::Int64, y) in Main at example.jl:2

f(x, y::Int64) in Main at example.jl:3

Possible fix, define

f(::Int64, ::Int64)

Stacktrace:

[1] top-level scope

@ REPL[6]:1



Plugging in your own type

A simple type:

struct MyType

x::Int

y::Int

end

Make addition work for MyType:

julia> import Base: +

julia> +(a::MyType, b::MyType) = MyType(a.x + b.x, a.y + b.y)

julia> MyType(1, 2) + MyType(10, 100)

MyType(11, 102)



JIT compilation and function specialization

I Julia is just-in-time (JIT) compiled

I Call function with new argument types
=⇒ JIT compile specialized version

I Specialized code can be fast
=⇒ don’t have to call another language like C/C++ for speed
=⇒ most of Julia is written in Julia



Comparison to object orientation

In an object oriented language:

result = x.f(y, z)

In Julia:

result = f(x, y, z)

I Most OO idioms can be translated to Julia,
syntax looks a bit different

I Behavior can be inherited

I Fields can not – avoids fragile base class problem

I Functions outside of types
=⇒ can add behavior after type has been created
=⇒ creates lots of extensibility



Some more nice things

I Capable terminal interface (REPL)

I Friendly syntax for matrix and array operations
I Matrix literals

A = [1 0 2

0 1 3]

I A * B for matrix product, A .* B for elementwise, etc
I . . .

I Integrated package manager
I Records used package versions for reproducibility



Some drawbacks

I JIT compilation can take a little time

I Not as many libraries compared to older languages
(but still many!)



Summary

I Expressive
I Easy to make different codes work together

I Friendly syntax for matrix and array operations

I Can be fast
I (JIT) Just-in-time compiled
I Designed to allow the JIT to produce good code


