
The many shapes of the Python
programming language

Jonas Lindemann
LUNARC, Lund university

Who am I?
• PhD in Structural Mechanics

• User interfaces concepts for finite element codes for
architects and designers

• Component based finite element applications (CORBA)
• Visualisation techniques for fibre networks
• Python / C++ / Fortran (yes you heard right)

• Director of LUNARC
• Centre for Scientific and Technical Computing at Lund

university

Who am I?

• Developer
• ForcePAD – Educational software for 2D finite element
• ObjectiveFrame – Educational 3D beam application
• Hacon – FEA tool for simulating hardening concrete
• Interactive Visualisation Framework – Ivf++
• Co-author of CALFEM for MATLAB and Python (FE-toolbox)
• QtCreator Fortran extensions
• GfxLauncher – Software for launching graphical applications

on compute clusters (Python)

• Creative coder / musician in my spare time
• Processing / py5 / Renoise

Who am I?
• Author

• Ingenjörens Guide till Python (The Engineers Guide to Python)
• Modern Fortran in Science and Technology (Online)

• Teaching
• Software Development for Technical Applications (Python)
• Programming in Science and Technology (Python/Fortran)
• Introduction in to Programming in Science and Technology

(Python/Fortran)
• Efficient programming of modern HPC (Python/Fortran)
• Advanced Programming in Science and Technology (C++)
• Scientific Programming in Python and Fortran

How I stumbled into Python programming?

…after my PhD defence - 2003

• Most of my research was in distributed computing and
visualisation

• A lot of C++ and Fortran code
• My opponent Hans-Petter Langtangen asked me:

”Have you tried Python?”

Python 2.2

Python and a C++/Fortran programmer?

• Python is a scripting language?
• Python can’t be fast
• Why should I switch from a compiled language?
• What use-cases?

So I tried it…

• It can be fast – Numarray / Numeric / Numpy
• It is interactive. You can experiment. Use it to do quick

sketches.
• Batteries included. Extensive and rich runtime-library.
• It is possible to extend with native modules in different

languages. (pybind11, f2py)
• It is possible to embedd in other languages.
• It is platform independent.

The shapes of Python

Using Python in Teaching

Image from: https://datacarpentry.org/

Getting students to practice and retrieve knowledge learnt
during the lecture

Image from: https://datacarpentry.org/

Engaging students during a lecture

• Historically, all lectures were static PowerPoint slides
• Difficult to get students involved in the courses
• I could be as committed as possible, and some fell asleep anyway...

• How can you create more interaction and engagement during
the lecture?

How Does Active Learning Support Student Success? - Teach Online (asu.edu)

https://teachonline.asu.edu/2013/03/how-does-active-learning-support-student-success/

Software carpentry

• Students are encouraged to follow the lectures that the
teacher conducts live.

• Post-It notes to inform the teacher if you are done with your
assignment

• The concept is exciting but challenging to implement at LTH /
LU

• Requires extra teaching assistants who can help the students during
live lectures.

• We can use some of the concepts

Concepts from software carpentry

• Live coding
• Small exercises during the lecture
• Quizzes

Solutions

• Provide environments where students can follow along
during lectures.

• Break lecture with opportunities to practice acquired
knowledge

• How do we implement this?

Finding an alternative interactive PowerPoint alternative

Finding a PowerPoint alternative

• PowerPoint slides are not interactive for the students
• Code examples are static
• Most of my existing course material where slides with code

examples…
• Jupyter Notebooks can show both text and code?
• This could work!

Jupyter Notebooks

• Document format based on JSON
• Record of user session, containing

code, text, equations and rich
output

• Interactive Computing protocol
• Communicates with computational

kernels
• Kernel

• Runs interactive code in a specific
language and returns output

Running notebooks

• Notebooks can be run locally using
Anaconda or similar environments

• Many providers have notebook services
that enable users to run the notebooks
in the cloud

Google Colab

• Provides Notebooks in the cloud
• Free tier works well for teaching purposes
• A URL can be provided to the students

before the lecture
• Requires a google-account to run.
• Notebook can be downloaded and run

locally

Example lecture Colab

https://bit.ly/pycon-2022-python-intro-colab

Files generated by running code

Section outline

Extra
comments/explanations
for the lecture

Starts a kernel for running code

Python as a rapid application development tool

User interfaces in Python
• The dynamic nature of Python is very suitable to quickly implement

user interfaces
• There exists several user interface toolkits for Python
• Tkinter

• Comes with Python – Easy to use. Looks a bit dated.
• wxPython

• Python binding for the wxWidget C++ library. Well-proven.
• PyQt/PySide/Qt for Python

• Python bindings for the Qt C++ library. Open source / Commercial license.
Well proven. Comes with a RAD tool Qt-designer

Qt/PyQt library architecture

Linux Windows macOS

Uikit/NSkitWin32/WinRTX11

Application

Qt (C++)

PyQt5 (Python binding)

Qt Designer

Creating user interfaces in PyQt

Loads file

Qt Designer .ui - file

uic-compiler

Inherits generated
class

Python app

.py class

Example of PyQt code
class MainWindow(QMainWindow):

"""MainWindow-klass som hanterar vårt huvudfönster"""

def __init__(self, app):
"""Class constructor"""

super().__init__()

--- Lagra en referens till applikationsinstansen i klassen

self.app = app

--- Läs in gränssnitt från fil

uic.loadUi("mainwindow_v2.ui", self)

--- Koppla kontroller till händelsemetoder

self.new_action.triggered.connect(self.on_new_action)
self.open_action.triggered.connect(self.on_open_action)

Example user
interface
developed in
the VSMN20
course
(Mechanics)

Quickly creating web based interfaces

Easy web interfaces in Python

• There is a multitude of web frameworks for Python
• Often very complex to use
• Flask is an easy to use framework for quick development of

web based applications

A very short example

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():

return "<p>Hello, World!</p>"

$ flask --app hello run
* Serving Flask app 'hello'
* Running on http://127.0.0.1:5000 (Press

CTRL+C to quit)

Electronic
sign
implemented
in Python with
Flask and
Raspberry Pi

Extending functionality with other languages

Extending Python

• External code can be linked into Python using extension
modules

• Extension modules in Python are implemented using a C
Python API

• Works just like normal Python modules
• Implementing a Python extension module is hard...
• Manually coding this is HARD, especially for arrays

Tools for implementing Python modules
• Simplified Wrapper and Interface Generator – SWIG

• Can generate wrappers for C/C++ code for many script languages
• Somewhat cumbersome to use

• PyBind11
• Operability between C++ and Python
• No need for interface files. Interface declared in C++ source
• Existing code have to be extended

• f2py
• Operability between Fortran and Python
• Very easy to use.
• Only Fortran ;)

Fortran as a Python accelerator?

• High performance language
• Compiles to optimised machine code
• Supports parallel computing

• OpenMP
• MPI

• Built-in array syntax
• Using f2py make it very easy to create Fortran-based

extension modules

Using f2py
! A[r,s] * B[s,t] = C[r,t]
subroutine matrix_multiply(A,r,s,B,t,C)

integer :: r, s, t
real, intent(in) :: A(r,s)
real, intent(in) :: B(s,t)
real, intent(inout) :: C(r,t)

C = matmul(A,B)
end subroutine matrix_multiply

$ f2py –m arr –c arr.f90

arr2.cpython-37m-x86_64-linux-gnu.so

Extension module (shared object)

Fortran source code – arr.f90

Python extension module name

Using f2py

import arr
print(arr.__doc__)

This module 'arr' is auto-generated with f2py (version:1.21.6).
Functions:
matrix_multiply(a,b,c,r=shape(a,0),s=shape(a,1),t=shape(b,1))

Using f2py

matrix_multiply(a,b,c,[r,s,t])

Wrapper for ``matrix_multiply``.

Parameters

a : input rank-2 array('f') with bounds (r,s)
b : input rank-2 array('f') with bounds (s,t)
c : in/output rank-2 array('f') with bounds (r,t)

Other Parameters

r : input int, optional

Default: shape(a,0)
s : input int, optional

Default: shape(a,1)
t : input int, optional

Default: shape(b,1)

print(arr.matrix_multiply2.__doc__)

Using f2py
A = np.ones((6,6), 'f', order='F') * 10.0
B = np.ones((6,6), 'f', order='F') * 20.0
C = np.zeros((6,6), 'f', order='F')

print("id of C before multiply =",id(C))

arr.matrix_multiply(A, B, C)

print("id of C after multiply =",id(C))

print(C)

id of C before multiply = 139866421235408
id of C after multiply = 139866421235408
[[1200. 1200. 1200. 1200. 1200. 1200.]
[1200. 1200. 1200. 1200. 1200. 1200.]
[1200. 1200. 1200. 1200. 1200. 1200.]
[1200. 1200. 1200. 1200. 1200. 1200.]
[1200. 1200. 1200. 1200. 1200. 1200.]
[1200. 1200. 1200. 1200. 1200. 1200.]]

order=’F’ ensure array is
created with column

ordering. Avoids copying

C++ and Python a perfect fit?

• C++ is a very powerful language for implementing scientific
codes

• Hard to implement user extensible applications in C++
• Wrapping a C++ code as Python extension can provide a

flexible layer for users not familiar with C++
• The application can be used in new ways and combined with

other Python-modules.
• Enables interactive use of the application!

pybind11

• Header-only C++ library for
implementing Python extension
modules

• Works on macOS, Windows and Linux
• Add directives to your code to expose it

as Python modules and functions
• Supports all Python features including

NumPy
• Can be used without modifying existing

code

pybind 11 - Function

int add(int i, int j) {
return i + j;

}

#include <pybind11/pybind11.h>

namespace py = pybind11;

PYBIND11_MODULE(example, m) {
m.doc() = "pybind11 example plugin";
m.def("add", &add, ”Add numbers");

}

$ cmake ..
$ make

example.cpython-37m-x86_64-linux-gnu.so

Extension module (shared object)

pybind11 - Classes

class ModelParams {
private:

double m_width;
double m_height;
double m_thickness;

public:
ModelParams(double width, double height, double thickness)
:m_width{width}, m_height{height}, m_thickness{thickness} {}

void setWidth(double width) { m_width = width; }
double width() { return m_width; }

void setHeight(double height) { m_height = height; }
double height() { return m_height; }

void setThickness(double thickness) { m_thickness = thickness; }
double thickness() { return m_thickness; }

void print() { std::cout << m_width << ", " << m_height << ", "
<< m_thickness << "\n"; }
};

pybind11 – Defining the class
#include <pybind11/pybind11.h>

namespace py = pybind11;

PYBIND11_MODULE(example, m) {
m.doc() = "pybind11 example plugin"; // optional module

docstring

m.def("add", &add, "A function that adds two numbers");

py::class_<ModelParams>(m, "ModelParams")
.def(py::init<double, double, double>())
.def("setWidth", &ModelParams::setWidth)
.def("width", &ModelParams::width)
.def("setHeight", &ModelParams::setHeight)
.def("height", &ModelParams::height)
.def("setThickness", &ModelParams::setThickness)
.def("thickness", &ModelParams::thickness)
.def("print", &ModelParams::print);

}

pybind11 – using the new module

>>> import example
>>> model_params = example.ModelParams(0.1, 0.2, 0.3)
>>> model_params.print()
0.1, 0.2, 0.3
>>> model_params.setWidth(0.5)
>>> print(model_params.width())
0.5
>>> model_params.print()
0.5, 0.2, 0.3

Using Python as an application language

Emedding Python

• Many large graphical applications us Python as a language for
extending functionality without recompiling

• Enables easy creation of plugins without recompiling the
application

• Enable users to expand functionality
• Enable a user interface application to be scripted
• Pybind11 can be used for embedding as well.

Embedding with pybind11 - CMake

cmake_minimum_required(VERSION 3.4)
project(example)

find_package(pybind11 REQUIRED) # or
`add_subdirectory(pybind11)`

add_executable(example main.cpp)
target_link_libraries(example PRIVATE pybind11::embed)

Embedding with pybind11 - Initialise

#include <pybind11/embed.h> // everything needed for embedding
namespace py = pybind11;

int main() {
py::scoped_interpreter guard{}; // start the interpreter

py::print("Hello, World!"); // use the Python API
}

Embedding – expose functionality
#include <pybind11/embed.h>
namespace py = pybind11;

PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
m.def("add", [](int i, int j) {

return i + j;
});

}

int main() {
py::scoped_interpreter guard{};

auto fast_calc = py::module_::import("fast_calc");
auto result = fast_calc.attr("add")(1, 2).cast<int>();
assert(result == 3);

}

Examples of embedded Python

ABAQUS/CAE

ParaView FreeCAD

Using Python for reproducible scientific workflows

Python for scientific workflows

• Multiple software tools are required in most scientific work
• Important to document how to reproduce results from data

analysis and simulations.
• Scripts can be used, but have limited functionality
• Python can be used to automate the entire workflow
• Glue language
• Important to use virtual environments to document which

versions of Python and modules used in the workflow

Python script

Example workflow

Prepare data Run simulation Process data Visualise

MPI CodeMPI CodeMPI CodeMPI Code

MPI CodeMPI CodeMPI CodeExternal data

Jupyter Notebooks

• Tool for combining code execution and documentation
• Good way to document a workflow
• Share a notebook with a collegue to reproduce the workflow.
• Important to decide what goes into a notebook and what should

go into modules.

Python and computational mechanics

Image from: https://datacarpentry.org/

Adding interactive capabilities to to CALFEM for Python

Adding interaction in Python libraries

• When learning finite element programming concepts, it can be
difficult for students to experiment with the code.

• CALFEM for Python is a Python package used in teaching the
finite element method.

• To enable the experimentation with changes in geometry
functions for interactively editing graphics was added.

• This provides a way of quickly changing models without many
code changes.

An example
--- Creating a square geometry with two markers

g = cfg.Geometry()

g.point([0.0, 0.0]) # point 0
g.point([100.0, 0.0]) # point 1
g.point([100, 100]) # point 2
g.point([0, 100]) # point 3

g.spline([0, 1]) # line 0
g.spline([1, 2]) # line 1
g.spline([2, 3]) # line 2
g.spline([3, 0]) # line 3

g.surface([0, 1, 2, 3]) # Connect lines to form
surface
g.setCurveMarker(0, 10)
g.setCurveMarker(2, 20)

--- Open the geometry to allow changes in the
CALFEM Geometry Editor

new_geometry, marker_dict = cfe.edit_geometry(g)
This command brings up a user
interface for modifying the
geometry.

CALFEM
Geometry
Editor

Python and creative coding

Image from: https://datacarpentry.org/

Creative coding

“Creative coding is a type of computer
programming in which the goal is to create
something expressive instead of
something functional. It is used to create
live visuals and for VJing, as well as
creating visual art and design,
entertainment (e.g. video games), art
installations, projections and projection
mapping, sound art, advertising,
product prototypes, and much more.”

Wikipedia

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/VJing
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Projection_mapping
https://en.wikipedia.org/wiki/Projection_mapping
https://en.wikipedia.org/wiki/Prototype

Processing

• Processing is an interactive
environment for Creative coding.

• Simplified Java-based language
• Large API for creating graphical

applications
• 2D/3D/Audio support

• Currently only supports Python 2 …
No NumPy

Creative coding in
Modern Python
using py5
• py5 is a project making the Processing

API available for in a modern Python
3.8 environment.

• Uses JPype to provide the functionality
to the CPython interpreter

py5 for Python

Visual Studio code and a custom py5 environment

Updated OOP course
material

• Instead of using abstract Point, Circle,
Box, and Line examples, we create
classes that can be drawn in py5.

• Example code a bit more complicated,
but 10x more engaging and fun

• A more prominent example with
simple particles is implemented.

• Live coding with Visual Studio Code

Explaning OOP graphically

• Object-oriented programming is hard to teach

• Examples often are boring and text-based.

• Is there a way of making this more engaging and
understandable?

Conclusions

• Python is a very versatile language
• Python can compliment and strengthen other languages
• Easy to integrate and extend
• By being interactive by design, it is well suited for use in

teaching
• Can be used as a glue in scientific workflows
• It is FUN!

Email
jonas.lindemann@lunarc.lu.se

Twitter
@jonas_lindemann
@LUNARC_LU

Github
https://github.com/jonaslindemann

YouTube
https://www.youtube.com/c/JonasLindemann

mailto:jonas.lindemann@lunarc.lu.se
https://github.com/jonaslindemann
https://www.youtube.com/c/JonasLindemann

	The many shapes of the Python programming language
	Bildnummer 2
	Who am I?
	Who am I?
	Who am I?
	Background
	…after my PhD defence - 2003
	Python and a C++/Fortran programmer?
	So I tried it…
	The shapes of Python
	Teaching
	Active learning
	Engaging students during a lecture
	Bildnummer 14
	Software carpentry
	Concepts from software carpentry
	Solutions
	Replacing PowerPoint slides
	Finding a PowerPoint alternative
	Jupyter Notebooks
	Running notebooks
	Google Colab
	Example lecture Colab
	Bildnummer 25
	User interfaces
	User interfaces in Python
	Qt/PyQt library architecture
	Qt Designer
	Creating user interfaces in PyQt
	Example of PyQt code
	Example user interface developed in the VSMN20 course (Mechanics)
	Web interfaces
	Easy web interfaces in Python
	A very short example
	Electronic sign implemented in Python with Flask and Raspberry Pi
	Extending
	Extending Python
	Tools for implementing Python modules
	Fortran as a Python accelerator?
	Using f2py
	Using f2py
	Using f2py
	Using f2py
	C++ and Python a perfect fit?
	pybind11
	pybind 11 - Function
	pybind11 - Classes
	pybind11 – Defining the class
	pybind11 – using the new module
	Embedding
	Emedding Python
	Embedding with pybind11 - CMake
	Embedding with pybind11 - Initialise
	Embedding – expose functionality
	Examples of embedded Python
	Workflows
	Python for scientific workflows
	Example workflow
	Jupyter Notebooks
	Computational mechanics
	An interactive finite element library
	Adding interaction in Python libraries
	An example
	CALFEM Geometry Editor
	Creative use
	Creative coding
	Processing
	Bildnummer 75
	Creative coding in Modern Python using py5
	py5 for Python
	py5 live coding environment
	Bildnummer 79
	Updated OOP course material
	Explaning OOP graphically
	Bildnummer 82
	Conclusions
	Contact info
	Thank you!

